Skip to main content

Difference Equations

First Order Difference Equations

Following equation is the linear first order difference equation:

yt=ϕyt1+wt.y_t=\phi y_{t-1}+w_t.

Recursive Solution

Consider the following system

DateEquation
0y0=ϕy1+w0y_0=\phi y_{-1}+w_0
1y1=ϕy0+w1y_1=\phi y_{0}+w_1
2y2=ϕy1+w2y_2=\phi y_{1}+w_2
\vdots\vdots
tyt=ϕyt1+wty_t=\phi y_{t-1}+w_t

Given the initial conditions y1y_{-1} and w0w_0, we are equipped to determine all future values of yy.

We can write y1y_1 as

y1=ϕy0+w1=ϕ(ϕy1+w0)+w1=ϕ2y1+ϕw0+w1.\begin{align*} y_1&=\phi y_{0}+w_1\\ &=\phi (\phi y_{-1}+w_0) +w_1\\ &=\phi^2 y_{-1}+ \phi w_0 +w_1. \end{align*}

Similarly y2y_2 can be written as

y2=ϕ3y1+ϕ2w0+ϕw1+w2,\begin{align*} y_2&=\phi^3 y_{-1}+ \phi^2 w_0 +\phi w_1 + w_2, \end{align*}

and y100y_{100} can be written as

y100=ϕ101y1+ϕ100w0+ϕ99w1++ϕw99+w100.y_{100}=\phi^{101}y_{-1}+\phi^{100}w_0 + \phi^{99}w_1 + \cdots+\phi w_{99}+w_{100}.

In general

yt=ϕt+1y1+ϕtw0+ϕt1w1++ϕwt1+wt.y_{t}=\phi^{t+1}y_{-1}+\phi^{t}w_0 + \phi^{t-1}w_1 + \cdots+\phi w_{t-1}+w_{t}.

Another general form is

yt+j=ϕj+1yt1+ϕjwt+ϕj1wt+1++ϕwt+j1+wt+j.y_{t+j}=\phi^{j+1}y_{t-1}+\phi^{j}w_t + \phi^{j-1}w_{t+1} + \cdots+\phi w_{t+j-1}+w_{t+j}.

Effect of wtw_t on yt+jy_{t+j} is

yt+jwt=ϕj.\frac{\partial y_{t+j}}{\partial w_t}=\phi^j.

Points to note:

  1. The above equation is also called Impulse Response Function (IRF).
  2. When ϕ<1|\phi|<1, the system is stable. When ϕ>1|\phi|>1, the system is explosive.
  3. If ϕ<1|\phi|<1, the cumulative effect of one unit increase in wtw_t on yt+jy_{t+j}, where j{0,1,2,}j \in \{0,1,2,\cdots\}, is
j=0yt+jwt=j=0ϕj=11ϕ.\sum_{j=0}^{\infty}\frac{\partial y_{t+j}}{\partial w_t}= \sum_{j=0}^{\infty}\phi ^j = \frac{1}{1-\phi}.

Example

Let the stream of future values be {yt,yt+1,yt+2,}\{y_t,y_{t+1},y_{t+2},\cdots\} and the interest rate be rr. Present value (PV) of the stream at time tt is given by

PV=yt+yt+11+r+yt+2(1+r)2+yt+3(1+r)3+PV=y_t+ \frac{y_{t+1}}{1+r}+\frac{y_{t+2}}{(1+r)^2}+\frac{y_{t+3}}{(1+r)^3}+ \cdots

Let β\beta be the discount factor, hence

β=11+r.\beta=\frac{1}{1+r}.

Therefore

PV=yt+βyt+1+β2yt+2+β3yt+3+=j=0βjyt+j\begin{align*} PV&=y_t+ \beta y_{t+1}+ \beta^2 y_{t+2}+ \beta^3 y_{t+3}+\cdots\\ &=\sum_{j=0}^{\infty}\beta^j y_{t+j}\\ \end{align*}

Effect of one time increase

What would be the impact of increasing wtw_t by one unit on PVPV while keeping wt+1,wt+2,,wt+jw_{t+1}, w_{t+2}, \ldots, w_{t+j} unchanged?

PVwt=j=0βjyt+jwt=j=0βjϕj=11βϕ\begin{align*} \frac{\partial PV}{\partial w_t}&=\sum_{j=0}^{\infty}\beta^j \frac{\partial y_{t+j}}{\partial w_t}\\ &=\sum_{j=0}^{\infty}\beta^j \phi^j\\ &=\frac{1}{1-\beta \phi} \end{align*}

provided βϕ<1|\beta \phi|<1.

Effect of permanent change on PV

What would be the impact of a permanent change in ww on PVPV?

A permanent change in ww means that wt,wt+1,,w_t, w_{t+1}, \cdots , and wt+jw_{t+j} would all increase by one unit.

Total change in PVPV can be calculated as follows

Total Change in PV=PVwt+j=1βjyt+jwt+1+j=2βjyt+jwt+2++j=jβjyt+jwt+j=j=0βjϕj+j=1βjϕj1+j=2βjϕj2++j=jβjϕ0=j=0βjϕj+βj=1βj1ϕj1+β2j=2βj2ϕj2++j=jβjϕ0\begin{align*} \text{Total Change in PV}&= \frac{\partial PV}{\partial w_t} + \sum_{j=1}^{\infty}\beta^j \frac{\partial y_{t+j}}{\partial w_{t+1}} + \sum_{j=2}^{\infty}\beta^j \frac{\partial y_{t+j}}{\partial w_{t+2}}+ \cdots + \sum_{j=j}^{\infty}\beta^j \frac{\partial y_{t+j}}{\partial w_{t+j}}\\ &=\sum_{j=0}^{\infty}\beta^j \phi^{j} + \sum_{j=1}^{\infty}\beta^j \phi^{j-1} + \sum_{j=2}^{\infty}\beta^j \phi^{j-2}+\cdots+\sum_{j=j}^{\infty}\beta^j \phi^{0}\\ &=\sum_{j=0}^{\infty}\beta^j \phi^{j} + \beta\sum_{j=1}^{\infty}\beta^{j-1} \phi^{j-1} + \beta^2\sum_{j=2}^{\infty}\beta^{j-2} \phi^{j-2}+\cdots+\sum_{j=j}^{\infty}\beta^j \phi^{0}\\ \end{align*}

Effect of permanent change on yt+jy_{t+j}

The effect on yt+jy_{t+j} of a permanent change in ww beginning in period tt is given by

yt+jwt+yt+jwt+1+yt+jwt+2++yt+jwt+j=ϕj+ϕj1+ϕj2++ϕ+1.\begin{align*} \frac{\partial y_{t+j}}{\partial w_{t}}+\frac{\partial y_{t+j}}{\partial w_{t+1}} + \frac{\partial y_{t+j}}{\partial w_{t+2}}+ \cdots + \frac{\partial y_{t+j}}{\partial w_{t+j}}&=\phi^j+\phi^{j-1}+\phi^{j-2}+\cdots+\phi + 1.\\ \end{align*}

When ϕ<1|\phi|<1, then

limj[yt+jwt+yt+jwt+1+yt+jwt+2++yt+jwt+j]=1+ϕ+ϕ2+=11ϕ.\begin{align*} \lim_{j\to \infty}\Big[\frac{\partial y_{t+j}}{\partial w_{t}}+\frac{\partial y_{t+j}}{\partial w_{t+1}} + \frac{\partial y_{t+j}}{\partial w_{t+2}}+ \cdots + \frac{\partial y_{t+j}}{\partial w_{t+j}}\Big]&=1 + \phi + \phi^2 + \cdots\\ &=\frac{1}{1-\phi}. \end{align*}